
Upgrade Notes

This topic lists noteworthy changes that can cause compile-time or runtime issues when upgrading Ensenso SDK or uEye driver
versions in an existing application.

See for a list of known issues in the current version of the SDK.

Upgrade of Ensenso SDK

≥ 4.1.x

The default changed to PatchMatch2 .
The new feature is enabled by default for monocular cameras and for .

: When is enabled, the ComputeTexture command now rectifies raw texture images instead of
computing a texture image from rectified images.

: The default point cloud was changed from Points to Circles .

B- and C-Series Firmware

Require an update to .
Changes to the handling of gain and blacklevel can affect the average image brightness. Review your target brightness and
exposure/gain settings after updating the firmware.

≥ 4.0.x

System Requirements

Using CUDA now requires a device with compute capability 5.0 or newer.
Using CUDA now requires at least version 452.39 of the Nvidia driver on Windows.
Support for Windows 7 was removed.

Default Parameters

The following parameters can change behavior of the API in the new version if you don’t set them explicitly.

The default value of and changed to the same values that were
already used in NxView parameter presets.
The parameter is now disabled by default, since it doesn’t have much effect when using the default
PatchMatch stereo matching algorithm. It is still enabled in NxView parameter presets using other matching methods.
The parameter for the command now defaults to true.
For cameras with color image sensors is now enabled by default.
Auto exposure now uses some amount of gain before increasing the exposure time to more than 5ms for X- and XR-series
cameras. This is the same behavior that was already used for C-series and newer N-series cameras.
The default value of and changed for S-series cameras. Gain now starts at the normal default value of 1 and
gets adjusted automatically. Auto exposure uses some gain before increasing the exposure time.
Virtual cameras now have enabled by default to assimilate their default parameters to those of hardware cameras.
File cameras now preserve the position from which the data was originally captured by default. This can change the position
of their data. See for details.

Functional Changes

The properties for stereo cameras are changed to refer to entire image sets. [#5118] (00204276)

The command enables DHCP on devices that support DHCP and are connected to a host adapter that
has obtained its IP address via DHCP when using the Auto . [#3107]
The command now returns right rays that originate in the right camera and intersect the left rays in the
corresponding 3D points.
The command reports an error if an unknown format is specified through the file extension of
the parameter instead of generating a PDF file with the wrong extension.
The node for commands was moved outside of the command’s result node. There is no link for backwards compatibility,
accessing the node at its old location will fail. This resolves some edge cases where the Time node could overwrite command
results.
If you use the C++ API, you can replace command.result()[itmTime] with command.status()[itmTime] .
The node of a monocular camera now always contains the camera matrix for the full image. The actually used
camera matrix with modifications due to binning can be found underneath the new node. [#5210]
NxLib: The command has a new parameter which changes the matching behaviour compared to
previous versions. Set equal to to obtain the behaviour of previous versions. [#5233]
NxLib: Bugfixes in the 2D edge layer of will lead to improved, but different results, even with identical parameters,
when is enabled. [#5220]
NxLib: Presets for updated. modelGeneration/medium now uses . search/medium now uses .
Lowered for all search presets. [#5220]

Removed Functionality

The command ClearImages was removed. If you used it to load images into an existing camera node, please use
 instead.

The parameter Operation for the Capture and Retrieve commands was removed.
Compatibility nodes for an old version of the profiler were removed from the node.
Unused string constants with no valid use cases were removed from the C headers and other interfaces.

List of Removed String Constants

Changes to JSON API Functions

The set of forbidden characters in JSON node names has been extended with the space and the double quote character as
well as further special characters. See the full list .
nxLibGetInt now clips the value to the minimum or maximum possible int value if the underlying double value is outside of

the range of an int .
nxLibGetBinary now returns NxLibBufferTooSmall if the provided buffer is too small.
nxLibGetName now returns "" if the item is the root node.

JSON API Return Codes

Introduced a new return code NxLibItemPathInvalid , which is returned by all API functions when the specified path to the item
is invalid.
Introduced a new return code ǸxLibInvalidParameters , which is returned by all API functions when a parameters given by the
user is invalid, e.g. when passing a NULL pointer as NXLIBSTR .
The return code NxLibCannotCreateItem was replaced by NxLibItemProtected to better describe its meaning. The old constant
still exists as an alias.

The return codes of the API were adjusted in some cases to describe errors better and make return codes consistent between
NxLib and NxLibRemote. These changes will probably not affect your program unless you check for specific error codes.

Complete List of Changed Return Codes

C/C++ Headers

C++ headers now require C++11. The compatibility mode for older versions using the NXLIB_CPP_COMPATIBILITY_MODE macro
was removed. Note that the library is still binary compatible, so you can continue to compile using the C++ classes from an
older version of the NxLib as a workaround.
NxLib: The constant headers were restructured. The following unintended use cases no longer work:

Including the headers nxLibApiErrors.h , nxLibCommonNodeNames.h or nxLibSymbols.h directly.
Using the macros NXLIB_ITEM , NXLIB_VALUE , NXLIB_COMMAND , NXLIB_ERROR , NXLIB_INT_CONST or NXLIB_APIERROR to define
additional constants outside of the NxLib header. The macros are now undefined after usage in the NxLib header.

NxLibItem::as<char const*>() was removed because the returned pointer was unsafe to use under certain circumstances.

.NET Interface

The Common Language Infrastructure (CLI) interface no longer ships with the Ensenso SDK. Use the new
 instead.

As described in the , the C API is still binary compatible, so you can continue to use the DLL files from older
versions except that they don’t contain new string constants.
The instantiated template functions NxLib.SetBinaryByte() , NxLib.SetBinaryShort() and NxLib.SetBinaryFloat() have been
removed. Use NxLib.SetBinary<T>() instead.
The instantiated template
functions NxLib.SetBinaryFormattedByte() , NxLib.SetBinaryFormattedShort() and NxLib.SetBinaryFormattedFloat() have been
removed. Use NxLib.SetBinaryFormatted<T>() instead.

≥ 3.6.x

The Common Language Infrastructure (CLI) interface is now deprecated and will be removed in a future version of the SDK.
Use the new instead, which provides a backwards compatible C# API that runs on all platforms where .NET is
available.
To simplify transition to the new interface, the Windows installers will continue to install the CLI DLL files. They are frozen to
version 3.5.1394, though. Due to the stable binary interface of the NxLib these DLLs will continue to work for the forseeable
future, except that new string constants and API functions will not be available. If you want to use new NxLib functionality with
the CLI interface, you can use string literals or define the necessary constants for the new node names and values yourself.
Instead of using the NxLib internal default values NxView now always loads the ‘PatchMatchFlexView4’ preset (or
‘PatchMatchSingleShot’ for cameras without FlexView) when no local settings file is available or ‘Load cached settings’ is
unchecked.
The command enforces stricter rules on the serial number of newly created file and virtual cameras. They are
now limited to alphanumeric characters and the symbols .,-+_~ .
Improvements in PartFinder might require adjustments of score thresholds.

≥ 3.5.x

Changes to the API function:
The parameter scientificNumberFormat was renamed to allowScientificFormat .
When allowScientificFormat is false, the function will never output numbers in scientific format even if they require more
characters than specified by the numberPrecision parameter.
When allowScientificFormat is true, the function will still output numbers in non-scientific format if it is shorter than the
output in scientific format would be.
Note that the function is binary compatible to the old version, but might return different results now.

Initialization of the OpenGL context in the NxLib on Linux now uses EGL instead of X11. This allows rendering without running
an X server, but might require some changes on headless systems. See for more information.

On Windows, the NxLib uses a dynamic C runtime library (CRT) now and requires an installation of the Microsoft Visual C++
Redistributable. The installer will install this automatically for you. You can use the NxLib DLL on a system where the installer
did not run if you install the CRT manually.
The now uses a different binary format. Log files generated by an NxLib with version ≥ 3.5 cannot be opened in earlier
versions of the NxProfiler.
PartFinder’s filtering of the points sampled from the CAD model and used for estimation is relaxed, so an estimated
relative may have significantly lower values. It is recommended that you adjust the thresholds for the

 and the .
≥ 3.3.x

This version ships with version 2.9 of the IDS GigE Vision firmware. Any GigE Vision devices should be updated as
suggested by NxView.
Functions that require a separate license (e.g. PartFinder) now require the presence of NxLibCmBridge64.dll (Windows)
or libNxLibCmBridge64.so (Linux), which gets loaded dynamically. The installers automatically install the library in the system’s
library directory. You don’t have to do anything if you use NxLib from there.
Due to a large number of internal changes and improvements the command will yield different results compared to
earlier versions. It is recommended to verify parametrization and results again when using PartFinder.

≥ 3.2.x

This version adds support for EEPROM on IDS GigE Vision cameras instead of saving it to a local file (requires at least
firmware 2.4). For backwards compatibility, the camera will still use the local file if it exists. Remove it manually to switch to the
EEPROM on the device. Note that the SDK only ships the new firmware 2.8 for the GV-5040ACP-M, which is used in S-series
cameras. For other camera model this version still ships an older firmware version due to known problems with the new
firmware versions.
This versions adds the new 11/12. This format is only required for S-series cameras, the
calibration of any other stereo camera can always be downgraded and saved in the previous format.
The IgnoreEnsensoPatternEncoding parameter for was removed, because the resulting undecoded patterns were
not usable for position estimation. CollectPattern in now always performs a basic decoding of Ensenso
patterns.
The AbsoluteBlackLevelOffset node in the camera parameters was removed, because it was not used and its value was
always zero.

≥ 3.1.x

Handling of multi-exposure images in the correlation matcher has been improved to increase data coverage for extreme
lighting situations. This can change the matching result with these settings (SDK-2139) [062688].
NxLibItem::as<char const*>() could return a dangling pointer in previous versions of the NxLib. To make it slightly safer, it now

returns a pointer to which the apply. The method will be removed in the next major version. If
you use it, you should replace it with NxLibItem::asString() or NxLibItem::as<std::string>() .
The bugfix SDK-2351 for changed the shadowing behaviour of the projection. Please verify that your
application is not affected when using this command.

≥ 3.0.x

The new PatchMatch stereo matching method as been adopted as default method and therefore the default values for the
following parameters have been changed: , stereo
matching , , , .
In order to benefit from the unlimited measurement range of PatchMatch the new flag has been introduced which
always enforces rectified images to have maximal width, regardless of the width of the stereo matching AOI.

The parameters and did not work correctly in previous releases. If these are in use in your
application please verify that they still produce the intended result with the repaired behaviour.

